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Conformations and Reactivities of Dimethyl 2,4-Dibromobicyclo-
[3.2.1])octane-6,7-dicarboxylates and Their 8-0xa Analogs.
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In solution, 6,7-disubstituted 2,4-dibromobicyclo[3.2.1]-
octanes and their 8-oxa analogs were deduced to exist preferen-
tially in chair conformations of their 6-membered ring by comparing
their Jvic with those calculated for the conformations obtained by
MM2 method. Among them, the 2-exo0,4-exo-dibromides on treatment
2,7'04,5

and its 3-oxa analog by double 1,3-dehydrobromination.

with base gave readily tetracyclo[3.2.1.0 Joctane derivative

exo-Tricyclo[3.2.1.02’4]octane derivative and its 8-oxa analog would be ex-

1)

cyclo[3.2.1]octanes and their 8-oxa analogs, among which 2-exo,4-exo-dibromo com-

pected to undergo addition of bromine and may be transformed to 2,4-dibromobi-

pounds may be conformationally interesting because the less strained chair con-

2) in their 6-membered rings would suffer severe 1,3-diaxial interaction

2)

interaction. Further, they may be used as precursors for the corresponding tetra-

former
between two bromine atoms while the strained boat conformer would have no such
cyclooctane derivatives (% and %) if they have electron-withdrawing substituents

on C,. and C7. These types of cage compounds had been obtained previously by

6
intramolecular [2+2] addition under irradiationa) or under the influence of a
transition metal complex4) but the above double cyclization approach with base
has not been reported except in special cases,s) because it has been difficult to

obtain the 2-exo0,4-exo-dibromo compounds.

2,4 6)

exo-Tricyclo[3.2.1.0 obtained in

]Joctane-6,7-endo~cis-dicarboxylate (;),
70% yield through cyclopropanation7) on the adduct of cyclopentadiene with maleic
anhydride followed by methanolysis and esterification (CH2N2), was irradiated in
dichloromethane8) (500W-HPL, Toshiba filter UV-39) for a short period of time in
the presence of 2.5 equiv. mol of bromineg)

[3.2.1)octane-6,7-endo-cis-dicarboxylate (ﬁ)lo)(>90%) along with a slight amount
10)

to give 2-exo,4-exo-dibromobicyclo-
of its 2-exo,4-endo-isomer (E). On the other hand, corresponding 8-oxa-6,7-
exo-cis-dicarboxylate (9), similarly obtained in 73% yield from the adduct of
furan with maleic anhydride, reacted under similar conditions in carbon tetra-

8) rather slowly and gave a mixture (1:1) of 2-exo,4-exo-dibromo- (Z)lo)

chloride
and 2-exo0,4-endo-dibromo-8-oxabicyclo[3.2.1]octane-6,7-exo~-cis-dicarboxylate

(9)10) in quantitative yield. As the attack of bromine radical, formed by photo-
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lysis, on the bridgehead carbon in a three-membered ring, is to proceed with

1)

tially formed and then they would attack on bromine molecule. In the case of %,

inversion of the stereochemistry, the exo-brominated radicals (2) must be ini-
endo-ester groups might interfere the endo introduction of the 2nd bromine atom
and % would give almost exclusively i. In the case of g, exo-standing ester
groups might not interfere the introduction of the 2nd bromine atom from the endo
side and a mixture of 7 and g might result. The preferred conformational struc-
tures of ﬂ, ;, Z, and § were deduced from their 1H—NMR spectra. Thus, comparison
of the 1H—1H coupling constants obtained by successive decoupling experiments on

1)

conformations of both chair and boat forms of ;9, %&, ;3, and %g, along with chair

400 MHz 1H—NMR spectra of these compounds with those calculated1 for preferred

forms of ;5 and %é, obtained by MM2 method clearly supports the preference of
2)

the cis and the trans dibromides (ﬁ, Z, g, and §) were very close to those calcu-

their chair conformations.1 The observed coupling constants shown in Table 1 of
lated for the chair forms of 2-exo,4-exo- and 2-exo0,4-endo-dibromides (%9, %3, %3’
and %9), respectively. The inconsistencies between calculated values of coupling
constants, J2,3exo and J2,3endo for ;ﬁC and ;éC, and those observed for ﬁ and Z
eliminate the endo-cis dibromo structures for these compounds.

On treatment with potassium t-butoxide (2.5 equiv. mol) in THF at -40 °¢ to
-20 °c, 4 gave exclusively 1 (957),10) but 7 gave 23) in rather low yield (29%).
On the other hand, 7 with DBU (1.2 equiv. mol) in refluxing benzene gave tricy-
clic bromide 16 (90%),10)
under the above conditions in 65% yield. The first cyclization step of Z was
found to be facile with DBU,3)
ficult; 16 gave 2 in 33% yield in addition to the lactonic ester (;3)14)(23%).
Treatment of the trans dibromide 8 with DBU gave the endo-monobromide (£§) in 73%

which was converted into % with potassium t-butoxide

but the second step with the same base was dif-

yield, but 18 resisted to further 1,3-dehydrobromination and gave only 17 in low

yield (27%) on prolonged heating with a large excess of DBU. The formation of 17
can be rationallized as facile cyclopropane opening in the anion 19 by a push-pull
13,15) The ease of the first ring closure of 4 (93% w1th DBU) and 7 by

base and probably the second cyclization by t-butoxide may be attributed to the
16)

mechanism.
stereoelectronic "3-exo-tetragonal'" control as shown by the almost linear
arrangement of bond Br-C, (or C4) to C, (or C6) on which anion is generated.
H
E 51 : Br
Ry
E
R2.
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Chemistry Letters, 1987

1825

Table 1. Dihedral Angles (¢) of Vicinal Protons, and Calculated (Jcalcd) and
Observed Values (Jobsd) of the Corresponding Coupling Constants a)
Compounds H)-H, Hg-H, Hy-Hiexo Hp-Haexo Hy-H3endo H4—H3endo
loc g . ® 57.9° -57.8° -71.6° 71.6° 41.3° -41.3°
~ caled 3.20 3.22 1.95 1.95 5.48 5.48
1o g 0 88.9° -104.6° -153.7° 161.9° -35.5° 46.2°
~ caled 0.79 1.49 9.74 10.81 7.26 5.62
1ac g ° -62.2° 62.2° 48.2° -48.2° 165.2° -165.2°
~ calcd 2.68 2.68 5.31 5.31 11.10 11.10
i Jobsd + + O Hz O Hz 5.8 Hz 5.8 Hz
e g ¢ 62.4° -62.3° -72.5° 72.5° 41.2° -41.2°
~ caled 1.75 1.76 1.88 1.88 5.50 5.50
11 g ° 96.3° -114.6° -157.6° 166.8° -39.6° 49.2°
~ caled 1.29 3.14 10.29 11.29 6.65 5.15
15¢ g ¢ -59.0° 59.0° 48.1° -48.1° 166.0° -166.0°
~ caled 3.60 3.60 5.33 5.33 11.22 11.22
7 Jopsd 1.7 Hz 1.7 Hz 1.3 Hz 1.3 Hz 5.6 Hz 5.6 Hz
1oc g 0 56.6° 62.6° -70.7° -49.8° 44.0° -165.3°
v caled 3.39 2.63 2.04 5.05 5.05 11.15
108 g ° 110.5° 36.3° -163.6° 28.15° -49.1° -86.8°
S calcd 2.09 6.49 10.99 7.50 5.16 1.18
5 Jipeg 5 Hz 2.2 Hz 0 Hz 5.4 Hz 4.6 Hz 12.7 Hz
13c g ¢ 60.0° 58.7° -70.7° -49.2° 45.0° -165.0°
o cacld 1.97 3.64 2.04 5.15 4.89 11.13
138 g °® 119.3° 31.3° -167.1° 30.5° -51.2° -85.8°
o calcd 3.78 6.97 11.31 7.15 4.83 1.20
8 J ped 1.7 Hz 3.8 Hz 1.7 Hz 5.4 Hz 4.9 Hz 11.9 Hz

a) The coupling constants were calculated by means of Altona's equation

using parameter sets of D or E defined in the text.

values of electronegativity differences for elements were used:

0.40; AXBP= 0.75; Axo= 1.30.

3
H(endo) ~
Chair (C)

> ;& X=0; Y. =Y_=Br; Y.=Y
13 X=0; Y=Y 6 =Br; Y
~s

15 X=0; Y.=Y =Br; Y_ =Y
~/

273 1
24 1=y
1774 2

W w b
sl

11)

1
Boat (B)

The following

Axc=

MM2 calculations were carried out using a program of Dr. Jun-Ichi Yoshida of

our University which was presented by the courtesy of Professor Eiji Osawa of

Hokkaido University.

Dr. Yoshida for giving us permission to use it.
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